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1. Introduction.

The paper is the second in the series about the h-p version of the

finite element method for solving parabolic partial differential equations.

In the first paper [1] we discussed the case when in the t direction

only one element of degree q--* was used.

In this paper we analyze the case when in both variables, the spatial and

time, the h-p version is used. We are showing some essential differences

between the p and h-p version. We will keep the notation of (i, but it

is not necessary to prerequisite for the present paper.

2.1. The h-p version for the initial value problem for an ordinary

differential eguation.

Let I = (0,T), I = [O,T], t e I, X = L 2(1) be the usual space with the

norm

(2.1.1) ll UPX = [fiu2dt] 1/2.

Let

= {v E c&(I) I v(T) = 0),

where CW(I) is the space of functions with all continuous derivatives on I.

For any A > 0 and v e 6) we define

(2.1.2) 1Illyx 1I- + Xvll X ,

where we denoted v. Let Y be the completion of 6) with respect to
dtA

the norm II'y •,

Remark 2.1.1. In [11 we have introduced in ) the norm



(2.1.3) Ilv 11 = I11: 2+ IIXvH21/2

and have shown (Lemma 2.1 of [11) that

(2.1.4) Cill V z;1 A Ilvly A< C2 1IVII Z,

with C1 > 0, C2 < +w independent of A and v but dependent on T.

On XxY. we define the bilinear form

AA

0

Further, let F e Y be a linear functional on YA" We can define

Problem P . For given F E Y' find u0 e X such that
A A0

(2.1.4) BA(uO, v) = F(v) V v E YA*

This problem has been analyzed in [1] where, among others, the unique

solvability of it has been proved. Moreover, the solution of the problem PA

Is a weak solution u0 of the initial value problem

+A u = f

(2.1.5)
u(O) = aA,

if

T

f~) Jfvdt +av(O).

Let now k Z 0, an integer, A = (t1,t2 )

S k(A) = {wj w is polynomial of degree -< k on Al

g)k(A) = {w E S (A) J w(t2 ) = 0}.
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We will first consider the following auxiliary problems:

for any X > 0, q ? 1, k = 0,1,..., c > 0, find [k] e S k (-1,1) such that

*[k] k]
(2.1.6) ---. AW-- J = CPk,

where Pk Is the Legendre polynomial of degree k.

The following lemmas give us the estimates of the solutions for the above

problems which are important in our further analysis.

Lemma 2.1.1. The problems (2.1.6) have the unique solutions w [k for any

k = 0,1,... .They satisfy:

*[k] [kli) AI - - + A L 2 (_ 1 ) = I/kc

ii) W[k](1) > 0 and l<k](-1)l S W[k]{l)

iii) if k 1 k2  then wk*](1) k C[k2](1).

Proof. Let us represent the solution w of the problem (2.1.6) by

k

(2.1.7) W[k](t) = (k] P Ct),

J=O

where P is the Legendre polynomial of degree J and use the summation

formula (see, e.g., [21)

(2.1.8) Ct) = (2j-41-1)Pj-21-1 (t).

i=O

Then we get the system of linear equations with the nonsingular matrix

3



x 0 0 ... -[k c

(2k-1) A 0 0 0 g[k] 0A k-1

0 (2k-3) A 0 .. 0 j3[k] 0

(2.1.9) A k-2 =

(2k-5) 0 (2k-5) x 0 g k] 0
A A 0  k-3

01 1 x [k] 0
L -3 1 0

So, we can see that the representation (2.1.7) is unique and the problem

(2.1.6) has a unique solution for any k = 0,1,2..... Then

I,_k]tk] [iL -1 2

i) U---+ (-1,1) flcPkIL 2(-1,1) /c 2k+

[k]

Furthermore, all the coefficients 0{ k, j = 0,1,...,k, are positive,

which immediately implies (ii). Indeed, from the property of the Legendre

polynomials, we have

k k

1W k] (-1)1 (-1)J 3(k] 1 k  
= 

]  k ](1).
j=0 j=o

By analyzing the system (2.1.9) for k and k+ I we can observe that

[k+ ] 1 k] _1

k+1 k X =

k+l-j >k-j

and

1[k+l] > 0.
0

The above Inequalities imply that

k2 k,
is [k2] > -70[kl] If k2 > kilY j ,,

k=O k=O

4



i.e.,

[k i1(1) < W ki l](1) if kI  < k 2.

iki ( k2 l
Lemma 2.1.2. Let c and w2 be the solutions of

.[kj]
W1 + Cl k1] = klc P t E (-1,1)

C1A 1 1 1 k'

and

Lfk 2]
2 +C 2 k2  = C2P t e (-1,1),

c 2A c2A 2  2 k 2

respectively. Then, for k1 _5 k2  and c2/c1 = '

(2.1.10) W [kl]( 1 ) < max(l, 2k2) [k2(1).1 w2

Proof. The values w[k] (1) and w[k2]( 1) can be expressed in the following
1 2

way (see (2.1.9)):

[k 1 + k1f(i,k1

1(c A) 2 1

0[k]l + 2 f(i , k2 )1

with some integer function fVi,k) -> 1. Then

1k1 [ +k 2 f(i k 2) .= I + 2 f~i,k 2) 1
(2 (c X21)~2 ]1 =A[ ( 2 ) 1  4+i acl 2i

[2 1 k2 flk21
max( 1, '2k2)A (c A)

Now, b v using Lemma 2. 1. 1 with X--) Ac and c = c1  we complet: the proof. a

1
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2.2. The h-p version of the finite element method for the Problem P

Let now

(2.2.1) AN : 0 = tO < t1 < t 2 < ... < tN = T

be a subdivision of (0,T) into time intervals In = t-' t ), n

1,2,... ,N, of the length n = t -t and d = T /2. Furthermore, letn n-i' n n

q = (qlq 2 .. qN)' qn - 1, an integer, n = 1,2,..., N, and

(2.2.3) S = q- I = {u E X uJi G sqn-l(I n
n

(2.2.4) V =g)q = {v E y A v1i Esq(In

n

The definition of YA implies the continuity of v E V and v(T) = 0.

We define the h-p version for the problem PA: For given F e Y', a
A A'

mesh AN, a = (qlq 2 .... qN) find u e S such that

(2.2.5) BA(u v) = F(v), V v e V.

Remark 2.2.1. The problem (2.2.5) is actually the set of N problems to be

solved in the succession. Let us denote for n = 1,2,...,N

S {Un : In-->R I un is a polynomial of degree 5 q n-1I,

V = {v : I --+> I v is a polynomial of degree < q n}, n = i, .. N- 1,n n n n n ''

VN = {vN : I n--R I vn  is a polynomial of degree 5 qn v N(t N) = 0}, n = N,

and represent the space V in the form of the direct sumn

(2.2.6) Vn = V 1 eV[2), n = 1,2,...,N- I, VN = V[
n n n NN

where

v il] = {v[1 1 e V IV (1 (t ) 0}n n n n n

6



vE
[2 1 . vJ[2 1  V IV[2 ) cn n n n n Cnn'

where Xn is a (fixed but arbitrary) polynomial of degree : qn such that

Xn(tn-I) = 0, Xn(tn) = 1.

Taking into account the continuity of each function v E V, vI. e Vn we

see that

N

dim V = dim S = Vqn

n=1

The result Is that the problem (2.2.5) is replaced by the following set of N

problems

(2.2.7) Bn(U, V[1]) = Fn(vli]) V v[I 1 e V[I]
Ann n n n

where for n = 1,2,...,N,

B n(U V1An ) Ju nV .+AV11dt

n

with

F I = ]fvfdt + avf (0)
II

(2.2.9) 1
Fn(vv11 )  = v[ldt + v2 dt - Bn 1 (un-' ), n

n n n J n - n-1 f n-i'"'2]
In  In_

and

v [21(tn) = v (1 t ) V n = 1,2,...,N-1.nn n+1" n ..

Let us note that the above sequence of problems is independent of the

selection of Xn'

Theorem 2.2.1. 1) Let u e S, v e V, then

7



(2.2.10) IBA(u,v)Il : iulxiBvIIy X

1i) If q I q 2 q N 2 1 and TI/T 1 : for any 1 : J N,

then

(2.2.11) dA(a,N) inf sup IB (uv)l a 1-1/2 N 1 mn,-(2q,(1/2))

UES vEV A 4V1
1lU11x=l OIlly A :1

iii) Let v E V, v * 0, then

(2.2.12) sup IB(u,v)l > 0.
UES A

Ilullx=l

Proof. 1) (2.2.10) follows from the Schwarz inequality.

ii) Denoting by

(2.2.13) 
IUn x n = 2 u ]dtj

n

and

f~ v 2 1 1/2
(2.2.14) IlVl 11 + AvndtJ

n

we get

(2.2.15) Iull X = I 2 n ]1/2

and

=~~ 1nlVly~}/2

(2.2.16) IlvIl1, f II J

For given u E S, u ' un G Sn, we will construct v e V, such that

V1l = vn E Vn
n

S



and using v = v as the function from the test space we will prove our claim.

Let

qn-1

(2.2.17) w Z an [k]

k=l

where

qn-I

(2.2.18) u n k

k=l

where P is the k-th Legendre polynomial on I and [k] E S k(In) is the
k n n

unique solution of

.(kl

(2.2.19) n +_k = Pn, t E 1 , k = 0,1,...
A n k n

By transforming these problems onto the reference element (-1,1) we can see

that

n E (-1,1), k = 0,1,...,q n-1

satisfy the following equations

: [k]
Cn +d1/2% k] 1/2

(2.2.20) n +Ad ) = d P t (-1,1), k = 0, 1 ... q 1.
Ad 1/2  n n n k
n

The problems (2.2.20) are of the type (2.1.6) with different A = Ad1/ 2 and
n n

c d 1/ 2 for different n = 1,2,... ,N. Thus
n n

(2.2.21) B (n(un W ) = n U +AX jdt 2

I
n

and

(2.2.22) 11Wn11VA,n = 1{Un11X, n9

. ............. ... .. . -- m mm i lllli| H ~ I 9



Now let

(2.2.23) = n ,(tn 1q]
n = n [ Tqnn (t )

n n

where w [q.] is the solution of (2.2.19) with k =q n  Obviously,
nn

(2.2.24) wn(tn) = 0, n = 1,2,...,N,

and

Bn w) [Un wn(tn) [q.] n 2

A (n' n A Wnn](t)Wn A (Un'W n nX,n
n n

since

Bn(u '[qn]) = 0.A n' n

Further

qn-1 qn-1
l Z nE /- 2 n 2k-+ [k ](2.2.26) w Cn(tn = k n (t)I = V/ 2k/+lk n (tn)
k=O k=O

'q.-1 2 1/2
:5 nL 2 ( n)2]1/2 2k+1 (k] )2]

2-k -+ k 2 n tnj

5 d 1 /2 2 1/2 q [l]qn]( )Illu 1
n n n n nlX,n'

where we used the Schwarz inequality and Lemma 2.1.1 1i). Thus

1w °(tn H n iA
(2.2.27) W11 1W 11+ In )1ly1,n +  [[q] l 11

n Y,,n n YAP n 1W( .,I t M n YA n
n n

d-1/2 lW[qr](t )Il 1 d1/2I

n lu 1f n n n n X,n n 2n lnlX, n +  V2_lw[ qn ] (tn )1 /' q n+l

11 ul n11 n ] S 2q12 1un11 X/2

10



Since 1w[k] (t ) I < W[k] (t ) for k = 0,1,...,q (Lemma 2.1.1 II), we get
ni n-1 n nn

analogously as before

(2.2.28) lwn(tn 1 )I 1W (tn- + nn [Iq.] (tn)I
n n-1 n n- 1 lwqn (t )In -

n n

< dn 1/2Vl[q [] (t )I iiu 11n n n nX,n"

Let us now define the following sequence of functions z e V . We putn n

(2.2.29) zN = 0

and

ZN-1 : VN-1

be the solution of the problem

Z N-1 
wN(tN-1) N-i t- -+ AZNI W (qM-l]( )q N-1 '  N-1,

N-1 N-i

where [qN-1] is defined by (2.2.19). Then

iwN~tNl)

(2.2.1) lz 11 5 qN 1 lip__1

zN- 1 yYIN-1 E lN )l N-1Iv PN 1+I
SN-1 N. N- 1

d- 1/2( ,) [q](tN) 1/2N v- N (O N N) uN Ix,N NN- 1V

i [qN-1 ] ( tN I V2qN_1+ 1

If q N <5 qN-1 and d N-1 /d N =NN-1 <  then from Lemma 2.1.2

(2.2.32) 1W [qj1](t 1 :< l WN, .[qpN-,)(tN)Imax(1,(r2q,,-,)

and

_1/2 1/2 2q z, i lINI1 , 2

(2.2.33) ZN i2y N- 1 <  2 q 1 max(l1o -

Further,

11



ZN 2  e VN 2

is the solution of the problem

N-2 WN-l (tN-2)+zN-1(tN-2) N-2(2.2.34) - + ZN-2 - [q-I t GI
NN-2 (tN2 ) q)N-2 N-2'
'N-2 N-2

Since

IzN -l(tN 2 )I < IZN -i(tN -1)1 = WN(tN -l)l

and from (2.2.28)

(22.5 : -l1/2 Yr .[qN-1]

(2.2.35) IwN l(tN_2)1 N-1  qN-1'N-1  (tNI)"uUNIX,N_ 1

while

(2.2.36) 5It d1 1/2 I q] (t

we have (with Lemma 2.1.2)

d- 1/2 vf .qy_1(tNl)(2.2.37) 1Z N11y I N-i N2qu-i1 UN-l1UX,N-1

~IN2 YN2 I qM21 (tN
N-2 (N-2

d_-1/2 r [qK] (tN)IIIN NN NIx N] 1/2/ -2
1W [qN-21 (t )IN-22qN_2;lN-2 (tN-2)

:521/2 q1/2 max 1,o-2 q m- 2+ ( 1 / 2 )  +I N
N-2 ) (+UNIIx, N- 1  UNIIX, N

Hence we can define the sequence z e V in the recursive wayn n

(2.2.38) N N*

Zn-1 A wn (tn-i)zn(t , ) n-2 n = N,N-1,N-2, 2,

A n-i u[q.-](tn qn-21 n-I

where w[qn- Is defined by (2.2.19). Then

n-i

12



N21/2 1/2a( 12q,-,+( 1/21) iulx
(2.2.39) IIZnl 1lly n-1 : 2 2 qnllmax(l, )7lu 111, I

i=n

Finally, let v e V such that

(2.2.40) v1, = w +z for n = 1,2,...,N.
nnn

Obviously from our construction, v is continuous and v(T) = 0. Moreovcr,

Bn (uz) = 0 for all n = 1,2,..., N.
A n'n

Thus

2 lu211X2 +  2

(2.2.41) sup IBA(u,v)I > 2
A(I~lI+Z1+2 +..+2 1/2v V (ll:5+1 Z1llX,' 1

+  .. +lWN+ZNlly ,N

11 u I 2, 2 . UN2

1/2 2 2 . 2
2 1 11w 11 Y, , 1+.. wIIwNi , N+IZlllY 1+ ' +. lZN -ly , N_

u ll 1 + .  +l I2

1 2 N 2)1/2

2 3 / 2 q1/2 llui 2,I+" 2 " "uN,1X +max( 1 4q 1 +)l [ u i ]
2 . .IUXNmal0 n=1l~ IXI

and further

(2.2.42) N 2

sup IBA(ulv)I a N N 1/2vV ^3/2 1/2L! 2 N 2 ]1/2
lii ql 1 11unilX , n+N ( N- 1 ) ma x ( l ',0 + ) EllUnllx, n)

Ily1 n=

N l 2 n 
1/2

1/2 2q,+1/2
4ql N max(1,o

The Inequality (2.2.42) immediately yields ii).

ili) For any v e V, vn = v), e Vn , we select u e S, such that
n

13



(2.2.43) u = u = n'
n

Then from continuity of v e V and v(T) = 0,

(2.2.44) B(u,v) = fT (- zJInI-A n
0 n-1 In

2] =N 2

- -f -2dt -A vdt] = dt - ( )dt
n=11 1 I1n= I n=1 I

n n n n

N .2 N

V n ] V 
(

Td n n-v -)
n

N *2

- I
n

N -2

- I t + vl(t o ) > 0 if v = 0.
n= I

n

Theorem 2.2.1 together with Theorem 2.2 of (11 and Theorem 6.2.1 of [3] (see

also Appendix of (I]) yields

Theorem 2.2.2. There is a unique u satisfying (2.2.5). If u0 e X is the

exact solution of the problem P. and ql > q2 > ... > qN > 
1, T I/T < So- for

I SI < j S N, then

(2.2.45) IUO-UIll x : (1+4ql1/2Nmax( 1,2q+(1/2))Inf11]uo-w X .

2.3. Comments.

If (2.2.11) is optimal, i.e., if there is a sequence of XiX,i,Ni} such

that

14



AI i I

with C independent of I, then there is a sequence of solutions ui g X

such that
RUCu-US 11 X 1/2 2q,,,+ (1/2)nfjju -w a Cq ll N imax( 1, a,

(See Theorem 2.10 of (41.)

The optimality with respect to the exponent of q has been proved In

(I]. Let us now prove the optimality with respect to the exponent of N.

Consider the case of a uniform mesh

(2.3.1) A : 0 = t 0  <t <.. < tN = T

with

(2.3.2) t n tn 1 = = .

Let q = q = I and v e V be defined by (Figure 2.3.1)

(2.2.3) VMt (-l) [(2N-2n+l)t+ N22 )] al te I n, n =1,2,... ,N.

V
6

5

A

N
N

Figure 2.3.1I v(t) for N =6.

15
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Now, let 1,02, .... ON-1 e S denote the basis function defined by

Ci t El

(2.3.4) On(t) = n n = 1,2,...,N.
t n

Then we have

(2.3.5) B( V) ,V) = f dt n ?+v dt = -+ n =1,2,...N.

n

Any u e S can be written In the form

N N

(2.3.6) u = CnI with 1lu12 = 1 2

n=l n=1

then

N

(2.3.7) BA(u, v) = (-, n/ + .)]-
n= 1

Obviously

(2.3.8) sup i _ [ -l + n 2N.2n +1 ] = N 
2N-2n + 21/2

uX51n=l n=l

0 2 1/,2
<5 K r+ I + K)j

Note that there exists a constant K2 > 0 such that

(2.3.9) 11II U y K- K2  1 + 2

Combining (2.3.8) and (2.3.9) we see that If A is sufficiently large in

comparison with N (e.g., At a N), there Is a constant C > 0 such that

16
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(2.3.10) inf sup IBA(u,v)l S CN- .
veV ur=S

ItvII =1 IuIl i

We have to understand (2.3.10) as an estimate which is uniform with

respect to A. We have seen that for given N, the estimate (2.3.10) holds

for A sufficiently large respectively to N, e.g., A _ N.

On the other hand we can easily show that

(2.3.11) inf sup IB (uv)I C(1+A4 ) -.
vcV ur=S

1jvIIY =1 uII l - 1

=vIn fact, given v e V, select u -. Then u e S and we have

(2.3.12) B (u,v) = - = + -_Ao foo

Thus, using Remark 2.1.1

(2.3.13) I1uIIX -< clIvy1

and

(2.3.14) fov2dt S CfoV2dt (because v(T) = 0),

Hence

(2.3.16) B Cu v) >_ C 2lll

A2 - I2I

l+A4  A

which yields (2.3.11).

The assumption ql 1 - q2 2- ... - qN seems to be only implied by the

17



specific construction of the sequence 4zn In the proof of Theorem 2.2.1.n n=1i

However, the counterexample considered below will show that the assump-

tion r I/t S a for I S J S N is necessary, i.e., without this condition

d A(q,N) can be arbitrary small (for some A). Let us consider only two

elements of length 1 and T, respectively, and q, = q 1.

V u

x

b-

Y_
y

I I+r
Figure 2.3.2

Thus

rb-a)t + a 0 < t S 1

(2.3.17) V(t)= bt + b(l+I) 1 < t < +T

(2.3.18) u(t) = x 0 < t < 1
fy 1 < t < I+T.

Then

(2.3.19) B(u,v) = x(a-b) + + . -++

and

NOul 2 =x2+Y2 T

(2.3.20) 
u

1= - 21 2 2 +2-X + 2 .

=1 V1 [2 1(A ( +Gv) 2]dt =a -_ab+b 2 + A -ab+b 2b2T
x AU A 2 A L 3

Obviously,
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(232) RAxa+b +~ i Ar rf (a+b) 2  b 2 T 1/2(2.3.21) R A, sup 2xg-+V T J 2  1/24

Ix, y)
x +y T=1

A {1 2 +!2b +b 2 r+11 1/2

Let

(2.3.22) Inf A2(2 j2bb+ b4- -- Qmin'

where inf is taken over a,b such that

(2.3.23) A2 (a2+12ab+b2 T+1= 1.

Then Qmin is the smallest elgenvalue of the following elgenvalue

problem

(2.3.24) AZ = QBZ,

Twhere Z = (a,b)

(2.3.25) A ] B = 3

=
2 4T+3 2T+1 Tdet (A-QB) Q-:T- - - 2-+ T-6 0

and Q mn--*O as r---0. Assuming that (2.3.23) holds, it is obvious that

there exists a function 0 < X(T) < 0o, 0 < T < 0, such that

(2.3.26) Ilvll2 MT) 1

and

(2.3.27) sup IB (u,v) 1 X(T)-+R.

Hence, using Remark 2.1.1, we get
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d (T) = inf sup IB (uv)I 1 :X(T) +Q1/2)1+ C)]-1/2
A 1V1y=1 IulIx~l - -1 + IN 3 '

Now, if A > Q1/2X1/3(T) and A C 1/4(T), thenmin

(2.3.28) dA (T) 2 1/2
A min

and d (T)(T)--0 as T--+0.

We have once more analyzed here the estimate which is uniform with

respect to A. Analogously as before, we could derive an alternative, not

uniform estimate.

Let us now analyze in detail the finite element method (2.2.5) for the

problem P. with q , T = T n T/N, n = 1,2,... ,N. We get nowS w n n

T

(2.3.29)

Y n ~ l y n A 2 ( Y y A n ~ lf ( t ) g n t d t ,
T ~ (Yn+Yn+1) t n

tn-i

where

(t-tn  for t < t < t
n (t n + -t ) f o r t n < t < t ln tn+1

and

a= u((n-)T) = U9 in(tn) n = 1,2,..., N.

We see that the finite element method is the well known Crank-Nicholson

difference scheme. By Theorem 2.2.2 we have

(2.3.30) NUO-U t X S CN infjlu 0 -wlIx,
wES
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where u0  is the exact solution of the problem PA" Obviously, for smooth

function as e.g., u0 = t
2  we have

I nf 11uO - w l X 2 CN-

WeS

and (2.3.30) suggest that the method does not converge.

On the other hand, by the classical finite difference approach we have

CN-111 (2)L(

(2.3.31) Iuo(tn)- Yn'

CNfu 0  "L MI

Letting Pu0 e S be such that PuIi = u (t ) we get

n

( 2.3.32) IIu0 - ul 1 < i u - Pu0 X + l1 Pu- u ll : CN- 1 11 u(2) 1 )(20.2 IOulX 0 0XaX fl 0  
1 L WIM'

Hence we obtained the convergence in contrast to the estimate (2.3.30).

Let us first note that using (2.3.11) we get instead of (2.3.30), where

C is independent of A, the estimate

(2.3.33) IUo-u a1X <- C(l+A4 )infIjuo-WIlX'w .
we S

Further, we remark that the estimate (2.3.31) assumes high smoothness. Let,

for example

u ( t) = aAe-A2 t

Then

flu (k)1L (I) = CA
2k+l

and for A = N we get from (2.3.32)

-15 4
Hu 0 - u 9 S CN-A = CN

while by (2.3.30) we get a bounded error.
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3. The h-p version for the parabolic problem.

3.1. Preliminaries and problem formulation.

Let 0 c R2  be a bounded, Lipschitz domain with a plecewise analytic

boundary r. Let D = Ixl2, I = (O,T). Then we will consider the problem

8u -Au = f on Dt

(3.1.) u = 0 on Ixr

u(O,x) = g(x) on 0.

Let, as in [I], X = X(D) = L 2I ()) with

(3.1.2) 2O = f ju,121 dt

0

and Y = Y(D) be the completion of

= {v e CW(I) Iv(t,x) has for any t e I compact support

in 0 and v(T,x) = 0}

in the norm

T

(3.1.3) 21 = O(1 1 rv 2_tH (0) (n)

0 H

* v
where V = Fv

On XxY we consider the bilinear form

(3.1.4) B(u.v) = OIn (-uv+VuVv)dxdt

and the problem P: Given F e Y', find u0 e X such that

(3.1.5) B(u,v) = F(v) V v e Y.

In [1) it has been shown that problem P has a unique solution for any
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F e Y' and the solution u0 of the problem P Is a weak solution of (3.1.1)

with

F(v) = f,9 g(x)v(Ox)dx+of f(t,x)v(t,x)dxdt.

3.2. The semidiscrete problem. Discretization in x.

Let R c H l(£) be a finite dimensional subspace of functions and

S = {u E X1 u(t,x) E R V t e I},

V = {v e Y I v(t,x) E R V t e I.

The semidiscrete approximation of the solution for the problem P is defined as

the function u5 E S satisfying

(3.2.1) B(u s, v) = F(v) V v e V.

The following estimate of the error for this semidiscretization has been

derived in (1],

(3.2.2) Iluo-usllx 5  C(R(R))- infju o-u sIIx
wES

under the assumption that the space R has the property X, i.e., there is

a number M{(R) < I such that

(3.2.3) NO a R(R)Ilull H'IllHRt()H ( )

holds for any u e R with

If uvdx IIlull = sup I i

HR(R M) vER il (Q)
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Moreover, it has been proven in [1] without assuming the property X, that

(3.2.4) Iluo-uslIx < CllUo-PoUollx ,

where P denotes the L 2-orthogonal projection of X onto R.

Assuming that R is (g,i1,v)-regular, i.e.,

liullill (Dl)

g(R) = sup - < +w
uER I1UllL2 ()

7) (R) = sup lU-PlUllL2(Q) < +0
ue§' (Q)

UE 0)

P(R)= sup ilu- PUIL2 (Q) < +®,

ueA 1 (fl)

IlullA() < 1

where Pot respectively Pit denotes the L 2- respectively, H -projection

operator of H l(0) onto R, we have proved

(3.2.5) X(R) > (+9(R)(R))-1.

Further we have shown that for any u e Al(), Ilull - 1

(3.2.6) Ilu -P oUlll~l (12) 5ln()vRgR.

3.3. Numerical examples.

Let us consider the following problem:

u-u" = 0 for (t,x) e D = (0,1)x(0,1)

(3.3.1) u'(t,O) = 0, u(t,1) = 0 for t e (0,1)
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u(x,O) = g(x) for x e (0,1),

a u * u (3 2uwhere = u L, u" = Due to the symmetry, the above problem is
Ot' =~ - ax2

equivalent to the problem on 5 = (0,i)x(-1,i), homogeneous Dirichlet

boundary conditions, and a symmetric solution.

2
We will address the cases g1 (x) = I -x and g2 (x) = i-x. In the

first case, the solution has singularity in the point x = 1, t = 0, while in

the second case the singularity is located in the point x = 0, t = 0.

First, we consider the case of one single element in time and three dif-

ferent meshes in space with discretization in space only. The first mesh (a)

consists of one element only. The mesh (b) and (c) is composed by two ele-

ments with the nodal point in x = 0.05 and x = 0.95, respectively, and the

space S polynomials of degree p on each element. Obviously for g1

inf tu-wljx
WeS

is essentially the same for the meshes (a) and (b) and the asymptotic rate is

the same because the refinement is at the place where there is no singularity.

In the case of mesh (c) we expect essentially two phases, the first one when

the rate is exponential (in p) and the second one for sufficient high p

when the rate is algebraic, the same as for meshes (a) and (b) (for more see

[s]).

On the other hand M(R) is different for the meshes (a) and (b) and

M(R) is the same for the meshes (b) and (c). In fact, (3.2.5) yields that

R(R) i +p h maxn ,

where hmax' respectively hmin  is the length of the maximal, respectively

minimal, element. Figure 3.3.1 shows that the effect of X(R) does not

25



appear In the computations.

For the mesh (a) we have two estimates (3.2.2) and (3.2.4). The estimate

(3.2.4) leads to the rate O(p- 4 5 + c ) as shown in [1], while the estimate

(3.2.2) gives the rate O(p-4+ ), c > 0, arbitrary. The fact that the

meshes (a) and (b) give practically identical results shows that the factor

(R) does not influence the results. Further, the case of the mesh (c) shows

exactly what had to be expected, namely a concave curve (which would straight-

en for higher p). The theoretical slope p-4.5 based on 3.37a [11 is shown

in Figure 3.3.1, too.

SPACE DEGREE p

2 3 4 6 8 10 1214 16

I I. I Ig1 (x I-x 2

l -I __________

-g W

~10- (af

-J

00

Figure 3.3.1I. The relative error of the semidiscrete method (discretization)

in x) vs. the space degree p in the log log scale for the
problem (3.3.1) with g1Cx) = 1-x 2  (slope based on 3.37 a

(1)).
(a) one space element h = 1.(b) two space elements h1 = 0.05, h2 = 0.95

(c) two space elements h1 = 0.95, h2 = 0.05.
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Figure 3.3.2 shows the analogous results for g2(x) a i-x. Now the

singularity is in x = 0, t = 0 and hence the mesh (b) is better than mesh

(c) in contrast with the previous case. The theoretical slope p-2.5 is

displayed in Figure 3.3.2, also.

Hence we can conclude that the performance of the method is not sensitive

to the mesh (at least in the one-dimensional case).

SPACE DEGREE p

2 3 4 6 8 10 12 14 16
1 1 1 I

-2 W x10 11

o-- o____ _______- %-, I .I

~'- (a) x--" '
00

...J 10 3- 0-- 1- x_

1(3.4 [I])

()t 0.05
0 1 x

Figure 3.3.2. The relative error of the semidiscrete method (discretization
in x) vs. the space degree p in the log log scale for -,he
problem (3.3.1) with 92 Wx = 1- X (slope based on section
3.4 (11).

(a) one space element h = 1.
(b) two space elements h, = 0.05, h2 = 0.95
(c) two space elements h, = 0.95, h2 = 0.05.
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3.4. The semidiscrete Problem. Discretization in t.

Let now (as in Section 2.2)

(3.4.1) AN • 0 = t0 < t1 < t 2 < ... <t = T

be a subdivision of (O,T) onto time intervals In = (tnl ,tn) of the length

Tn tn tn-l Furthermore, let

(3.4.2) q = (qlq 2 , .... N), q n -: 1, an integer. n = 1,2,...,N

and

(3.4.3) Tq_ = {u e L2 (I) 1 u in eq-i n

(3.4.4) I V = Cv C0 (Y) I vj, e Sqn(I ) and v(T) = 0).
I nn

Define now

(3.4.5) S = T X ()

(3.4.6) V = ×AI(Q).
g g

For any u e S respectively v e V, we have

(3.4.7) u(t,x) = IiWui W,

1=1

where u are the elgenfunctions of the corresponding elliptic eigenvalue

problem introduced in [11, with

a T q-1

and

(3.4.8) v(t,x) = ti M(t)uI(x),

1=1

with
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1E

I I I*

Defining the bilinear form B(u,v) on S xV by

(3.4.9) B(u,v) = (-a +A2 at,

where AI is the eigenvalue corresponding to u,, I = 1,2,..., we can use

Theorem 2.2.1 to prove

Theorem 3.4.1. Let u0  be the solution of the problem P and us  its semi-

discrete solution (discretization in t). Then, if q1 2 q2 a ... q N ? 1

and xr o / for 1 S I < j S N then

Hu u11:5Cq1/2 Nmx. o 2q,+(1/2) iflu wJ

g

3.5. Numerical examples.

Let us consider first the case when the initial function g3()= cos 2W

and the semidiscrete (discretization in time) is used. In this case the

problem essentially reduces to the ordinary differential equation because

g3 (x) is an eigenfunction. Figure 3.5.1 presents the results for different

meshes. Theorem 3.4.1 gives the error estimate which strongly depends on o.

Figure 3.5.1 shows that the factor depending on o- is not essential, mainly

because the eigenvalue A is not too large and the major effect, as before,

arises from the approximation. We mention that we could give for this case

another estimate where the right hand side depends on A.
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TIME DEGREE q

I 2 3 4 5 6 8
_ I 3

0 1. -_cos-..==,_,-, .__

W (a) -<I X

-
:uJ - x--- (b) 0=_"\ .

LAJ
S -9  o--- (c) c= 50 - \-

Figure 3.5.1. The relative error of the semidiscrete method (discretization
in t) vs. the time degree q in the log log scale for the
problem (3.1.1) with g3(x) = cosa and the following meshes:

2
(a) 'r = 0.1, T2 = 0.2, t 3 = 0.3, "4 = 0.4, o < 1
(b) Ti = 0.1, T2 = 0.4, T3 = 0.3, T4 = 0.2, o = 2
(c) Tj = 10/71, T2 = 50/71, T3 = 1/71, T4 = 10/71, o- 50.

In the other example (Figure 3.5.2) we did not observe the dependence on o

(although for some solutions such dependence will occur, see (2.3.28)).
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TIME DEGREE q

2 3 4 6 8 10 12 16

I I I . .. ._

I _

,, io- .-9 ,.0 0

-4 *-4 (a <1

(:F4 (0) o <I

0-..

(c) o'=64 .,

Figure 3.5.2. The relative error of the semidiscrete method (discretization
In t) vs. the time degree q in the log log scale for the
problem (3. 1. 1) with g,(x) = 1 - x2 and the following meshes:

(a) T, = 1/85, T2 = 4/85, T3 : 16/85, T4 = 64/85, o < 1
(b) T, = 1/85, T2 = 64/85, T3 : 16/85, T4 = 4/85, o - 16
(C) T, = 4/85, T2 = 64/85, T 3 : 1/85, T4 = 16/85, o - 64.

3.6. The complete discretization.

Let us define

(3.6.1) S = S(R,q,&) = T q 1 xR

(3.6.2) V = V(R,q,&) = VxR.

Combining the results of previous sections we get

Theorem 3.6.1. Let u0 e X be the solution of the problem P and us e S be

the finite element solution
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(3.6.3) B(u sv) = F(v) V v e V.

Then, if the space R has the property X, q1  q2  ... qN 2 1, and

't/T :So for 15i<j N, then
(3.64) 12 -12q,+CI/2)

(3.6.4) Ous-uo fI Cq1 /2 N(X(R))-Imax(1,2) )infjuo-wji
wES

and

Theorem 3.6.3. Let u. E X be the solution of the problem P and us e S be

the solution of (3.6.3). If cI denotes the error of the semidiscrete method

in (3.4.9) (discretization in t) and c2  is the error of the semidiscrete

method (3.2.1) (discretization in x) and R is (g,i),P)-regular, then

(3.6.5) 1us -u oliX S C(Cl1( + n(R)+P(R))g(R)+e2.

3.7. Numerical examples.

The h-p version of the finite element method gives large freedom to

select elements in the space and time variables. This flexibility can be

employed in various ways, for example, in connection with adaptive approaches.

We also have seen that for q = 1, the method coincides with the Crank-

Nicholson method and hence the h-pversion in t can be implemented as a spe-

cial solver for the stiff ODE's arising from the solution of the semidiscrete

method discussed in Section 3.2. Various aspects of this feature will be

addressed in the forthcoming papers in this series. Here we will present some

illustrative results related to the question of the optimal relation between

p,q and a mesh in one dimensional setting we used earlier.

We will assume that in space (i.e., x-variable) only one element of
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degree p is used, while in the time variable we use N elements of degree

q. The shape functions are integrals of Legendre polynomials (in x), and in

t we use Legendre polynomials as trial shape functions and integrals of

Legendre polynomials and linear ones as test functions. Using the band solver

we need

(3.7.1) W = N.W

arithmetic operations, where

P]3 for 2q p
(3.7.2) W T4q3p for 2q < p.

We consider the problem (3.3.1) for g(x) = g2 (x) = 1-x and g(x)

g3(x) = cos2 as the representatives of the solutions for unsmooth and smooth

initial data problems.

In the case of g(x) = g2(x) we have used the radical mesh in t, i.e.

(3.7.3) t = n n = 0,1,2,...,N, with =3,n N) T'

and for g(x) = g3(x) we have used the uniform mesh

n

(3.7.4) t =N! n = 0,1,2,.... -N.

In the following figures we present the accuracy in dependence on (p,q)

in the scale log(relative error) vs. a with q = p. We also show the work

needed for computation based on (3.7.1 - 3.7.2).

For low q, the error is governed by the time integration, i.e., we deal

here essentially with the case of semidiscrete method with time discretization

(as discussed in section 3.4).

In contrast, high q's essentially show the performance of the semidis-

crete method with discretization in space only (as discussed in section 3.2).
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In Figures 3.7.1 - 3.7.3 we present the results for g(x) = g2 (x) =

1- x. We see that for any required accuracy the minimal computational work

is needed when q is selected low and N large.

Note that the numbers in parentheses indicate the value of q used and

e.g. the value 5.3E4 denotes that the approximate work W 5.3104 has

been needed to compute the finite element solution.

In Figures 3.7.4 - 3.7.6, we show the analogous results for g(x) =

g3 (x) = cos --. Here we see, in contrast to the previous case, that the best

is to select one time element and large q.

In both cases we used the same p and q in all time intervals. The

results show that the flexibility of the method, when properly employed, leads

to the large increase of computational effectivity. Various adaptive

approaches here will be very effective tools for such an optimal choice.

These aspects will be addressed in the forthcoming paper.
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postdootoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This Includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

" To be an international center of study and research for foreign
students In numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. BabuNka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.




